Martin Luther University Halle-Wittenberg

Further settings

Login for editors

Publications


2023

64. "Micellar Catalysis for a Sustainable Hydroaminomethylation Process in Water"; Elisabetta Monciatti, Francesca Migliorini, Giulia Romagnoli, Matthias Vogt, Robert Langer, Maria Laura Parisi, and Elena Petricci; CS Sustainable Chem. Eng. 2023, XXXX, XXX, XXX-XXX. https://doi.org/10.1021/acssuschemeng.3c02983   

_______________________________________________________

63. "Slow Inversion of Coordinated Thioether Groups in SNS-Type Ruthenium Pincer Complexes"; Frederik Rummel, Frerk Wehmeyer, Matthias Vogt and Robert Langer; Eur J Inorg Chem 2023, e202300313 (1 von 6). https://doi.org/10.1002/ejic.202300313   

________________________________________________________

62. "Hexacoordinated MIV (M = Ti, Zr, Hf) Tetrachlorido Complexes with Chelating Dithienylethane Based 1,2 Diketone Ligand – π-Conjugation as Decisive Factor for Axial Chirality Mode"; Dirk Schlüter, Daniel Duvinage, Robert Langer, Matthias Vogt; Eur J Inorg Chem 2023, e202300276. https://doi.org/10.1002/ejic.202300276   


Inside Front Cover

Inside Front Cover

Inside Front Cover

61. "A hampered oxidative addition of pre-coordinated pincer ligands can favour alternative pathways of activation"; Frerk-Ulfert Wehmeyer and Robert Langer; Chem. Comm. 2023, 59, 40, 6004 - 6007. DOI:10.1039/D3CC00874F   

________________________________________________________

60. "Switching mechanistic pathways by micellar catalysis: a highly selective rhodium catalyst for the hydroamino-methylation of olefins with anilines in water“; F. Migliorini, E. Monciatti, G. Romagnoli, M. L. Parisi, J. Taubert, M. Vogt, R. Langer*, E. Petricci*, ACS Catalysis 2023, 13, 4, 2702–2714.
https://doi.org/10.1021/acscatal.2c06104   

Hydroaminomethylation (HAM) is a very straightforward reaction for amine synthesis usually performed in hard reaction conditions and using nonsustainable solvents. The use of micellar and microwave catalysis involves switching from the traditional HAM reaction mechanism to the efficient regioselective synthesis of linear amines. The cover is the result of a collaboration with artist Vanessa Rusci (https://www.vanessa-rusci-arte.com) in the context of a project for scientific dissemination. View the article.
https://pubs.acs.org/toc/accacs/13/4

Hydroaminomethylation (HAM) is a very straightforward reaction for amine synthesis usually performed in hard reaction conditions and using nonsustainable solvents. The use of micellar and microwave catalysis involves switching from the traditional HAM reaction mechanism to the efficient regioselective synthesis of linear amines. The cover is the result of a collaboration with artist Vanessa Rusci (https://www.vanessa-rusci-arte.com) in the context of a project for scientific dissemination. View the article. https://pubs.acs.org/toc/accacs/13/4

Hydroaminomethylation (HAM) is a very straightforward reaction for amine synthesis usually performed in hard reaction conditions and using nonsustainable solvents. The use of micellar and microwave catalysis involves switching from the traditional HAM reaction mechanism to the efficient regioselective synthesis of linear amines. The cover is the result of a collaboration with artist Vanessa Rusci (https://www.vanessa-rusci-arte.com) in the context of a project for scientific dissemination. View the article.
https://pubs.acs.org/toc/accacs/13/4


2022

59. “Mass spectrometric detection of ion pairs containing rigid  copper clusters and weakly coordinating counter ions using liquid  injection field desorption/ionisation"; J. Taubert, M. Vogt, R. Langer, Eur J Mass Spectrom 2022, 29, 2, 68-74. DOI: 10.1177/14690667221139419    

________________________________________________________

58. "Manganese(I) Tricarbonyl Complexes with Bidentate Pyridine-Based Actor Ligands – Reversible Binding of CO2 and Benzaldehyde via Cooperative C–C and Mn–O Bond Formation at Ambient Temperature"; R. Stichauer, D. Duvinage, R. Langer, M. Vogt, Organometallics 2022, 41, 19, 2798–2809.
https://doi.org/10.1021/acs.organomet.2c00387   

________________________________________________________

57. "Cationic ligands between σ-donation and hydrogen-bridge-bond- stabilisation of ancillary ligands in coinage metal complexes with protonated carbodiphosphoranes“; M. Maser, M. Vogt, R. Langer, Dalton Trans. 2022, 51, 17397-17404.
doi.org/10.1039/D2DT02338E   

________________________________________________________

56. "Trigonal Bipyramidal Rhodium(I) Methyl and Phenyl Complexes: Precursors of Oxidative Methyl and Phenyl Radical Generation"; Inorganics 2022, 10 (3), 28; U. Fischbach, M. Vogt, P. Coburger, M. Trincado, H. Grützmacher. https://doi.org/10.3390/inorganics10030028    

________________________________________________________

55. "Time-Resolved X-Ray Spectroscopy to Study Luminophores with Relevance for OLEDs"; M. Vogt, G. Smolentsev. ChemPhotoChem 2022, 6, e202100180. https://doi.org/10.1002/cptc.202100180    

_________________________________________________________

54. "David Milstein: Shaping Organometallic Catalysis Over Five Decades"; Moran Feller, Chidabaram Gunanathan, Amit Kumar, Robert Langer, Michael Montag, Thomas Schaub, Matthias Vogt, Thomas Zell; Chemistry Views 06/2022; Copyright: Wiley-VCH GmbH. DOI:10.1002/chemv.202200040   

_________________________________________________________

53. "In Celebration of the 80th Birthday of Prof. Dr. Dieter Fenske"; Peter Werner Roesky, Stefanie Dehnen, Kurt Merzweiler, Udo Radius, Robert Langer, and Harald Krautscheid; Z. Anorg. Allg. Chem. 2022, 648, e202200268. https://doi.org/10.1002/zaac.202200268   


2021

52. "An Organotin Route for the Preparation of 2,6-Bis(diphenylphosphino) bromo-benzene and the Related Bis(Phosphine Oxide). Precursors for Novel Ligands"; Fabio Meyer, Thomas Kuzmera, Enno Lork, Matthias Vogt, Jens Beckmann; Z. Anorg. Allg. Chem. 2021, 1-7. https://doi.org/10.1002/zaac.202100210   
____________________________________________________________

51. "(6-Diphenylphosphinoacenaphth-5-yl)indium  and -nickel Compounds: Synthesis, Structure, Transmetalation, and  Cross-Coupling Reactions"; Sinas Furan, Matthias Vogt, Konrad Winkel, Enno Lork, Stefan Mebs, Emanuel Hupf, Jens Beckmann; Organometallics 2021, 20, 9, 1284–1295. 9, https://doi.org/10.1021/acs.organomet.1c00078   

___________________________________________________________

50. "Facial vs. Meridional Coordination Modes in ReI Tricarbonyl Complexes with a Carbodiphosphorane-based Tridentate Ligand"; Leon Maser, Matthias Vogt, Robert Langer; Z. Anorg. Allg. Chem. 2021, 647, 14. https://doi.org/10.1002/zaac.202100151   

The Cover Picture shows a series of rhenium(I) triscarbonyl complexes with a carbodiphosphorane-based tridentate ligand between two facades of the MLU Weinberg Campus. The [PCP] and [PC(H)P]+ coordination sides in the carbodiphosphorane ligand open a window to versatile coordination modes toward the ReI center. In this context the colored globes, highlighting the large impact of modern pincer chemistry, illustrate the meridional configuration of the carbodiphosphorane pincer-ligand in the reported rhenium complex to be located in the thermodynamic ground floor. Yet a facial arrangement was initially observed upon coordination to ReI, it is located in the upper floors of the building (https://doi.org/10.1002/zaac.202100151).

The Cover Picture shows a series of rhenium(I) triscarbonyl complexes with a carbodiphosphorane-based tridentate ligand between two facades of the MLU Weinberg Campus. The [PCP] and [PC(H)P]+ coordination sides in the carbodiphosphorane ligand open a window to versatile coordination modes toward the ReI center. In this context the colored globes, highlighting the large impact of modern pincer chemistry, illustrate the meridional configuration of the carbodiphosphorane pincer-ligand in the reported rhenium complex to be located in the thermodynamic ground floor. Yet a facial arrangement was initially observed upon coordination to ReI, it is located in the upper floors of the building (https://doi.org/10.1002/zaac.202100151).

The Cover Picture shows a series of rhenium(I) triscarbonyl complexes with a carbodiphosphorane-based tridentate ligand between two facades of the MLU Weinberg Campus. The [PCP] and [PC(H)P]+ coordination sides in the carbodiphosphorane ligand open a window to versatile coordination modes toward the ReI center. In this context the colored globes, highlighting the large impact of modern pincer chemistry, illustrate the meridional configuration of the carbodiphosphorane pincer-ligand in the reported rhenium complex to be located in the thermodynamic ground floor. Yet a facial arrangement was initially observed upon coordination to ReI, it is located in the upper floors of the building (https://doi.org/10.1002/zaac.202100151).

__________________________________________________________

49. "Rhodium Carbonyl Complexes Featuring Carbodiphosphorane-based Pincer Ligands“; W. Xu, L. Maser, L. Alig, R. Langer; Polyhedron 2021, 196, 115018. https://doi.org/10.1016/j.poly.2020.115018   

__________________________________________________________

48. "From carbones to carbenes and ylides in the coordination sphere of iridium“; Y. Li, L. Maser, L. Alig, Z. Ke, R. Langer; Dalton Trans. 2021, 54, 954. DOI:10.1039/d0dt03942j   

_________________________________________________________

47. "Flexible Coordination of Carbodiphosphorane-based Pincer Ligands in Chromium(0) Carbonyl Complexes“; L. Maser, P. Korziniowski; R. Langer; Can. J. Chem 2021, 99, 2, 253-258. DOI:10.1139/cjc-2020-0351   


2020

46. "Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays"; Smolentsev, G., Milne, C.J., Guda, A. et al.; Nat Commun, 2020, 11, 2131. DOI:10.1038/s41467-020-15998-z    
(Dr. Vogt mit MLU als affiliation)
_______________________________________________________

Cover Picture
Free Access Front Cover:
The Pincer Platform Beyond Classical Coordination Patterns (Eur. J. Inorg. Chem. 41/2020)
Dr. Matthias Vogt, Prof. Dr. Robert Langer
Pages: 3884
First published: 20 October 2020

Cover Picture Free Access Front Cover: The Pincer Platform Beyond Classical Coordination Patterns (Eur. J. Inorg. Chem. 41/2020) Dr. Matthias Vogt, Prof. Dr. Robert Langer Pages: 3884 First published: 20 October 2020

Cover Picture
Free Access Front Cover:
The Pincer Platform Beyond Classical Coordination Patterns (Eur. J. Inorg. Chem. 41/2020)
Dr. Matthias Vogt, Prof. Dr. Robert Langer
Pages: 3884
First published: 20 October 2020

The Front Cover shows the  analogy between the  arrangement in pincer-type ligands and simple  geometrical compositions,  which can easily be deconstructed into their  building blocks. Using  such a deconstructive approach, the present  Minireview categorizes  pincer-type ligands according to the binding properties of the involved  ligating fragments and reflects achievements beyond well-established  definitions. More information can be found in  the Minireview by M. Vogt and R. Langer   .

________________________________________________________

45. "The Pincer Platform Beyond Classical Coordination Patterns“; M. Vogt, R. Langer. Eur. J. Inorg. Chem., 2020, 3885–3898. https://doi.org/10.1002/ejic.202000513   

________________________________________________________

44. "Small Chains of Main Group Elements by BH3-adduct formation of tBu2E-N(H)-EtBu2 (E = P, As)“; M. Fritz, B. Ringler, C. v. Hänisch, R. Langer; Z. Anorg. Allg. Ch, 2020, 992-998. DOI: 10.1002/zaac.202000034   

________________________________________________________

43. "Effect of pyrolytic temperature over MOFs templated Cu NPs embedded in N-doped carbon matrix on hydrogenation catalytic activities“; W. Xu. C. Lin, S.-J. Liu, H.-Y. Xie, Y.-X. Qiu, W.-T. Liu, H.-R. Chen, S.-B. Qiu, R. Langer, Inorg. Chem. Commun., 2020, 115, 107859. DOI:10.1016/j.inoche.2020.107859   


2019

42. “Lewis Acid Transition Metal Catalyzed Hydrogen Activation: Structure, Mechanism, and Reactivity“; Y. Li, J. Liu, X. Huang, L.-B. Qu, C. Zhao, R. Langer, Z. Ke, Chem. Eur. J. 2019, 25, 13785-13798. DOI:10.1002/chem.201903193   

_______________________________________________________

41. “Redox-active, boron-based ligands in iron complexes with inverted hydride reactivity in dehydrogenation catalysis“; A. Bäcker, Y. Li, M. Fritz, M. Grätz, Z. Ke, R. Langer, ACS Catalysis 2019, 9, 8, 7300-7309. DOI:10.1021/acscatal.9b00882   

_______________________________________________________

40. “Comparing the Acidity of (R3P)2BH-Based Donor Groups in Iridium Pincer Complexes“; L. Maser, C. Schneider, L. Alig, R. Langer, Inorganics 2019, 7(5), DOI:10.3390/inorganics7050061   

_______________________________________________________

39. “Quantifying the Donor Strength of Ligand-Stabilized Main Group Fragments“; L. Maser, C. Schneider, L. Vondung, L. Alig, R. Langer, J. Am. Chem. Soc. 2019, 141, 7596-7604. DOI:10.1021/jacs.9b02598   

______________________________________________________

38. “Ligands Based on Phosphine-Stabilized Aluminum(I), Boron(I) and Carbon(0)“; L. Vondung, P. Jerabek, R. Langer, Chem. Eur. J. 2019, 25, 3068-3076. DOI:10.1002/chem.201805123   

______________________________________________________

37. “Reactive Dimerization of an N-heterocyclic Plumbylene: CH Activation with PbII“; R. Guthardt, J. Oetzel, J. I. Schweizer, C. Bruhn, R. Langer, M. Maurer, J. Vícha, P. Shestakova, M. C. Holthausen, U. Siemeling, Angew. Chem. Int. Ed. 2019, 58, 1387-1391. DOI:10.1002/anie.201811559   


2018

36. "CO2 based hydrogen storage – formic acid dehydrogenation"
T. Zell, R. Langer, Phys. Science Rev. 2018, 3 (12). DOI:10.1515/psr-2017-0012   

_______________________________________________________

35. "Introduction: hydrogen storage as solution for a changing energy landscape"; T. Zell, R. Langer, Phys. Science Rev., 2018, 4 (1). DOI:10.1515/psr-2017-0009   

______________________________________________________

34. "A New Anthraquinoid Ligand for the Iron-catalyzed Hydrosilylation of Carbonyl Compounds at Room Temperature: New Insights and Kinetics"; , Dalton Trans., 2018, 47, 7272-7281. DOI:10.1039/c8dt01123k   

______________________________________________________

33. "Carbodiphosphorane-based nickel pincer complexes and their (de)protonated analogues: dimerisation, ligand tautomers and proton affinities"; L. Maser, J. Herritsch, R. Langer, Dalton Trans., 2018, 47, 10544-10552. DOI:10.1039/c7dt04930g   

_____________________________________________________

32. "Umpolung at Boron - Ancillary Ligand Induced Formation of Boron-based Donor Ligands from Phosphine-Boranes"; L. Vondung, L. Alig, M. Ballmann, R. Langer, Chem. Eur. J., 2018, 24, 12346 –12353. DOI:10.1002/chem.201705847   

______________________________________________________

31. “Ambireactive (R3P)2BH2-groups facilitating temperature-switchable bond activation by an iron complex“; L. Vondung, L. E. Sattler, R. Langer, Chem. Eur. J., 2018, 24, 1358-1364. DOI: 10.1002/chem.201704018   

_____________________________________________________

30. "From  ruthenium to iron and manganese - a mechanistic view on challenges and  design principles of base metal hydrogenation catalysts"
T. Zell, R. Langer, ChemCatChem, 2018, 10, 1930 –1940.
DOI:10.1002/cctc.201701722   

______________________________________________________

29. "The ABC in Pincer Chemistry - from Amine- to Borylene- and Carbon-based Pincer-Ligands"; L. Maser, L. Vondung, R. Langer, Polyhedron 2018, 143, 28-42. DOI: 10.1016/j.poly.2017.09.009   

Up